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Pestome. Obexkm Ha u3ciedsane e HAYAIHA 3A0a4a 30 HETUHEUHU HEABMOHOMHU CUCHeMU
Ooughepenyuarnu ypasuenus. Bwve ¢azosomo npocmpancmeo Ha cucmemama e 3a0adeHo makd
Hapeuenomo npeskousauo muodxcecmseo O . Hamepenu ca docmamvunu yciosus 3a:

1. Cpewa na mpaexmopusima na saoavama c muoxcecmeomo @ ;

2. Oyenxa na epememo 3a 00Cmueane Ha NPesrIiou8aujomo MHOICECMEO,

3. Henpexvchama 3a8UucumMocm Ha Nupeus MOMEHm Ha cpewa HA MpaeKmopusma c

NPesKIIoUBaAUOMO MHONCECBO OMHOCHO HAYATIHOMO YCI08Ue.

Ionyyenume pesynimamu ce npunaeam npu uU3Cie08aHe HA KA4eCMeama HA peuleHusma Ha
umnynchu ougepenyuanuu ypasuenus. C maxuea ypasHeHuss ce MOOeaupam OUHAMUYHU NpOYyecu,
KOUMO €A NOONIONHCEHU HA ,, KPAMKOBPEMEHHU ~ 8bHUIHU 8b30€UCHEU.

Kntouosu oymu: neasmonomuu HeauHelnu Ougeperyuanity ypasHeus, npesKiioyeauo MHOMCEeCmeo,
UMAYACHU ehekmu

The behavior of the solution of initial problem of nonlinear non-autonomous systems
of ordinary differential equations is investigated in this paper:

dx
o = f (t, X), Q)

X(t) =%, @
where the function f : R" x D — R"; the phase space D is non empty domain in R"; the
initial point (t,,x,)e R*xD. The solution of problem above is denoted by X(t;t, %), and
the corresponding trajectory by (t,,%,) = {X(t:t, %), t=t,}.

We introduce the function ¢: D — R, which in the general case is nonlinear and the
corresponding non empty set @ ={x e D, (p(x):o}. In the current study, we determine the
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conditions, under which the trajectory y(to,xo) meets the set @, i.e. it cancels function ¢.
Furthermore, the function ¢ and the set ® are named switching function and switching set,
respectively. For the initial point, we assume that (p(XO) #0.

Let t, be the first moment after t,, in which the solution x(t;t;,x,) meets the

switching set @, i.e. there is
o(x(tity, %)) =0 for ty<t<t, and o(x(t;t,,%))=0.
The moment t, is a switching moment.
Consider the initial condition
X(ty)=x ©)

where (t,",x, )€ R xD and ¢(x;)=0. If (t;,%;)#(t,, %) is satisfied, then in the common
case, the corresponding switching moment t; of trajectory y(t; ,x;) (if exists) is different

from t,. In other words, the effects on the initial condition of trajectory reflect on the

switching moment.
The following notations are introduced:

- || and (.,.) are the Euclidean norm and the scalar product in R", respectively. For the

2

points x=(x',%*,...,X"), y=(y"y*,...y")€R", we have

(X, y>:(xlyl+x2y2 ot x”y")%,
2 2 n 2 %
= (000)) 2 =((0) () et (7))
- The distance between non empty sets A, B < R" is defined by the equality
p(AB)=inf{|x,—xs]; X, €A x; €B};
- In particular, the distance between the point x, € R" and the set AcR" satisfies the
equality
p (%, A)=inf{[x, —x,[; x, €A}.
Definition 1. We say that, the switching moment t, of the trajectory of initial problem (1)
depends continuously on the initial condition if
(Veor>0)(36 = 5(w) > 0): (vt e R"ft; ~t,| < 5[v; D, i — x| < &)
:>‘tf —tl‘ <o.
The next conditions are introduced:
H1. The function f e C[R*xD,R"].
H2. A constant C,. >0 exists such that
(9x:x" < D)= () ~p(x")|<C
H3. The function ¢ e C'[D,R].
H4. A constant C,;, >0 exists such that

(vxeD)=|grade(x)|<C

— “grade *

Lipp

o [X =X

H5. The following inequalities are valid:
o(x)(grade(x), f (t,x)) <0,(t,x)e R" xD.
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H6. A constant C > 0 exists such that

(grade, f)
( V(t.x)eR*xD )= |grade(x), f(t,x))|>C g4y 1) -
H7. For any point (to,xo)e R*x D, the solution of initial problem (1), (2) exists and it is

unique for t>t,.
The next theorems are valid:

Theorem 1. Let the conditions H1, H3, H5, H6 and H7 be fulfilled. Then the trajectory of
problem (1), (2), meets the switching set @ .
Proof. From condition H5 it follows that one of the following two cases is satisfied:
Case 1. ¢(x)<0 for xe D and (grade(x), f (t,x))>0 for (t,x)eR"xD;
Case 2. ¢(x)>0 for xe D and (grade(x), f (t,x))<0 for (t,x)eR"xD.
Let us consider Case 1. The other case is considered by analogy. We introduce the

function
#(1) =0 (X(tit5, %)) = (X (tity, X ), X (titg, X, ) oo X" (i1, %, )
which is defined for t > t,. In this case, we have

¢(to) :(”(X(to;to’xo)) =(p(X0)<0.
According to condition H6, it is satisfied

d 0 d
at ¢(t) =§¢(X(t;to, XO))E NG (t;to, Xo)
0 d
+y(p(x(t;to, XO))E X2 (t;tg, %)

#o g o(x(tt%)) 1 (6 X(61,%)
:<9rad<0 X(tite: %)) f(t’x(t;tO’Xo)»
2 Cgradp, 1y = CONSE>0.

Using the fact ¢(t,) <0 and %g/}(t):const >0 for t>t,, it follows that there exists

a point t, >t, such that ¢(x(t;t),%,))=¢(t,)=0. It means that at the moment t, the

trajectory y(t,,X,) meets the set @.
]

Corollary 1. Let the conditions H1, H3, H5, H6 and H7 be satisfied. Then the trajectory
7(t5,%) of perturbed problem (1), (3) meets the switching set .
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Theorem 2. Let the conditions H1, H3, H5, H6 and H7 be satisfied. 7hen the next inequality
is valid

b=t < 5o (%) @

(grade, f)
Proof. According to the assumption, made at the beginning of the paragraph, it is satisfied

X, € D\ ®. (If we assume that x, e @, then t, =t, and ¢(x,)=0. In this case, the inequality
(4) is obvious).
Then, there exists a point z, t, <z <t such that:

[ 06)] =[o(x(tit %)) - (x(6it. %))
:Kgrad (p(x(z:t, %)) f (T,X(T;tO,XO))>
grad(pf (t1 —t )

from where, it follows (4).

t1_'[0|

L]

Theorem 3. Let the conditions H1, H2, H3, H5, H6 and H7 be satisfied. 7Then the next
inequality is valid

t—ty < —— p(%,, D). (5)

Proof. Let:
- ¢ be an arbitrary positive constant;

- The point x, e @, i.e. ¢(x,)=0, besuchthat p(x,,x,)= <p(%, ®)+e&
- The function ¢:[t,o)— R and ¢(t):¢)(x(t;t0,x0));¢:[toyoo)—> R;
- Assume that ¢(x,) <0 and (grade(x), f(t,x)) <0,(t,x)e R*xD.
As in the previous proof, it can be shown that ¢(t,)=¢(%)<0 and

_¢( )=C (aradr) > 0 1>To. There is a point z, where t, <7 <t,, such that

9()~9(t)] = | 5 #(9)| (61> ) (6-5):

From the inequality above, we obtain successively

t—t, < #(t) -4 (1))

(grade, f)

<Py —X

C<grad(p,f>
b C< 01 .
grade, f)

&
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As ¢ is an arbitrary constant, it follows that it is satisfied (5).

Corollary 2. Let the conditions of the previous theorem be fulfilled. Then

* * C | *
t—ty <—"— p(x;, D).
(grade, f)
The next theorem is a basic.

Theorem 4. Let the conditions H1, H2, H3, H5, H6 and H7 be satisfied. Then
(Ve =const >0)(35 =5 (w)>0): (vt e R", 7 —t5|< 5\, e D, % =% < 5)
. C,
=it -t <—"—ow.
‘ ‘ C(gradqy,f)

Proof. For the convenience, we assume that the inequality t <t is valid. Let @ be an

arbitrary positive constant. From the theorem of continuous dependence (see Theorem 7.1,
Dishliev A., Bainov D.), it follows that there is a constant ¢ >0, such that if the considered
requirements of the theorem are valid, then

(X666 X (it %)) =[x (65856 ) =X (Lt %) < @
We have
p(x(tl;t;,x;),CD)Sp(x(tl;tg,x;),x(tl;to,xo))sa).
We apply Theorem 3 and obtain the estimate
* * CLi * C:Li
-t =t -t <=0 p(x(ttg, %5 ), @) < B

C<gfadf/)~f> (grade, f)
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